Table of Contents

Department Administration/Class & Track Advising / SPN 3
Introduction to Biomedical Engineering 4
BME Mission, Goals, Educational Objectives & Outcomes 5
BME Faculty/Staff Locator 6
Basic Curriculum 7
Departmental Guidelines 8
Department Core Course Requirements 9

Electives 12
Departmental Electives
Acceptable Technical Electives
Acceptable Life Science Electives
Humanities/Social Science & General Electives

Tracks in BME 22
1) Biomedical Computing, Imaging & Instrumentation Track
2) Biomechanics and Rehabilitation Engineering Track
3) Tissue Engineering & Molecular Bioengineering Track

Special Programs 26
Minors, Double/Dual Majors, BS/MBA, BS/MS, BS/MD, Bachelor’s/Master’s Combined Degree Program, James J. Slade Scholar Program, Directed Research, Industrial Interaction, Co-op

Faculty Research/Expertise 29

Forms 31
Research Guidelines
Application for Directed Research
Application for the Independent Study
BME Research Scholars Academy Overview
BME Research Scholars Academy Application
Application for Internship
BME Co-op Application
UnderGraduate Program Administration

DEPARTMENT CHAIR UNDERGRADUATE DIRECTOR

Dr. David I. Shreiber Dr. Kristen Labazzo
(Shreiber@soe.rutgers.edu) (Sakala@soe.rutgers.edu)

UNDERGRADUATE ADMINISTRATOR

Ms. Linda L. Johnson (Lindalj@soe.rutgers.edu)

CLASS ADVISING

<table>
<thead>
<tr>
<th>All Classes</th>
<th>Your Assigned Faculty Advisor</th>
<th>Email List see page 6</th>
<th>Email for Appointment</th>
</tr>
</thead>
</table>

TRACK ADVISING

(More contact info on page 6)

<table>
<thead>
<tr>
<th>Track</th>
<th>Track Designation</th>
<th>Advisors</th>
<th>Advising</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biomedical Computing, Imaging, and Instrumentation (BCII)</td>
<td>M. Pierce mark.pierce@rutgers.edu</td>
<td>Email for Appointment</td>
</tr>
</tbody>
</table>
| 2 | Biomechanics and Rehabilitation Engineering (BRE) | W. Craelius craelius@soe.rutgers.edu
J. Zahn jdzahn@soe.rutgers.edu | Email for Appointment |
| 3 | Tissue Engineering and Molecular Bioengineering (TEMB) | Li Cai lcai@soe.rutgers.edu
T. Shinbrot shinbrot@soe.rutgers.edu | Email for Appointment |

Special Permission Number/Pre-req Override

Please email Undergraduate Administrator or Director with your:
~FULL NAME, RUID#, Class of 20XX and COURSE NAME (not Index #)~

Please inform me of any messages during registration such as course is closed, do not have pre-reqs, etc.
Please wait patiently for a response.
Introduction to Biomedical Engineering

The Biomedical Engineering program at Rutgers University was initially established in 1965 as a track within Electrical Engineering, offering M.S. degrees with a Biomedical Engineering emphasis. In 1986, the State of New Jersey formally chartered the Rutgers Department of Biomedical Engineering as an independent entity within the School of Engineering with exclusive responsibility for granting M.S. and Ph.D. degrees in biomedical engineering. The Department developed its graduate programs in collaboration with the University of Medicine and Dentistry of New Jersey (UMDNJ) to provide a strong foundation in the basic biomedical and clinical sciences along with rigorous training in engineering fundamentals. The undergraduate program in Biomedical Engineering was inaugurated in 1991 under the “Applied Sciences’ option within the School of Engineering; a formal undergraduate B.S. degree in BME was approved by the University in 1997 and by the State in 1999.

The achievements of biomedical engineering constantly touch our daily lives. Past and current breakthroughs that were pioneered at Rutgers include: techniques for online analysis and operating room lesioning of brain tissue for Parkinson’s disease; an artificial hand with finger dexterity; the use of virtual reality in the rehabilitation of limbs; revolutionary techniques for making large numbers of new biopolymers for implants; and rapid NMR analysis of protein structure, balloon catheters, and pacemakers.

The BME program currently offers three main curriculum options, called “tracks”: 1) biomedical computing, imaging, and instrumentation, 2) biomechanics and rehabilitation engineering, and 3) tissue engineering and molecular bioengineering. The biomedical computing, imaging, and instrumentation track provides training in computational approaches, various imaging modalities, bioelectronic device design, and in theoretical modeling related to microscopic and macroscopic biomedical phenomena.

A focus in biomechanics and rehabilitation engineering offers instruction on development of devices for improved human performance. In the tissue engineering and molecular bioengineering track, students apply principles of materials science, biochemistry, cell and molecular biology and engineering to design engineered tissues, biomaterials, and molecular medicine, through the pursuit of problems on the cellular, molecular and nano-scale. The broad education provided by these tracks allows students to choose from a wide variety of careers. Many graduates work in large corporations and smaller companies as practicing biomedical engineers. Increasing numbers of graduates are finding rewarding jobs in state and federal institutions, including the Patent and Trademark Office and many of the National Laboratories of Advanced Research. The degree program also prepares qualified students for graduate study leading to the M.S. or Ph.D. degrees in biomedical engineering. In addition, students are prepared to meet the graduate entrance requirements for medical and law schools, business administration, and other professional disciplines.

There are several exciting opportunities for conducting research at the Undergraduate level. The Department has recently established a Research Scholars Academy in Biomedical Engineering. Additionally, the department participates in the School of Engineering’s James J. Slade Scholars Research Program. Both selective programs can serve as springboards for highly qualified students to commence work toward the M.S. or Ph.D. degree in the senior year of the undergraduate curriculum.
Biomedical Engineering Mission, Goals, Educational Objectives and Educational Outcomes

Biomedical Engineering Mission Statement

The mission of the BME undergraduate program is to provide students with a broad and flexible education in engineering and biological science as well as medically related subjects. The students are prepared to analyze, synthesize, and link knowledge in the multi-disciplinary fields, with the emphasis on quantitative approaches and methods. The students will be integral part of the society to improve the understanding and control of biological processes towards improving human health. Our curriculum guides our students toward skill in creating new knowledge and technologies as well as applying current knowledge.

Mission of the School of Engineering:

The School of Engineering Mission Statement was revised and ratified by the faculty on October 7, 2011. The mission statement is as follows.

- To educate and train the future engineers of a complex, diverse, and global workplace
- Provide high quality, relevant education programs to undergraduate and graduate students using the latest technology and education techniques
- To conduct state-of-the-art research that embraces technology to address societal challenges of a multifaceted United States and a globally connected world
- Create an environment to encourage and assist faculty to become leaders in their fields, and to further gain national and international recognition
- Conduct cutting-edge research in strategically important engineering areas
- To serve as a resource to local, New Jersey, and regional stakeholders in advancing the public’s interest
- Promote economic development through technology, entrepreneurship, and innovation

The mission statement is published at: http://www.soe.rutgers.edu/administration

Program Educational Objectives (PEOs)

The BME program educational objectives (PEO) are consistent with the mission of Rutgers University and with the overall mission of the School of Engineering stated above. These objectives were modified and ratified by the faculty on April 12, 2012. The University mission and aims of the School are printed in the Undergraduate Catalog for the School of Engineering, read by prospective students, and entering freshmen. The educational objectives of the Biomedical Engineering Program are to educate students to attain the following:

1. To establish themselves as practicing professionals in biomedical or biotechnology industries or engage themselves in advance study in biomedical engineering or a related field.
2. To make positive contributions in biomedical industries and/or other sectors.
3. To demonstrate their ability to work successfully as a member of a professional team and function effectively as responsible professionals.

The BME mission statement and PEOs are available to the public at the departmental Web page, http://www.bme.rutgers.edu/content/educationABET.php. Also, note that one change has been made to the educational objectives since the last ABET visit. The change was a rewording of the objectives to make them consistent with the most recent ABET definition of Program Educational Objectives, although the sense of the objectives is unchanged.

C. Student Outcomes (SOs)

The student outcomes were adapted in the previous first ABET cycle. These outcomes reviewed and ratified by the faculty on April 12, 2012. Therefore, each Biomedical Engineering student will demonstrate the following attributes by the time they graduate:

a. an ability to apply knowledge of mathematics (including multivariable calculus, differential equations linear algebra and statistics), science (including chemistry, calculus-based physics, and the life sciences), and engineering.
b. an ability to design and conduct experiments, as well as to analyze and interpret data.
c. an ability to design and realize a biomedical device, component, or process to meet desired needs.
d. an ability to function on multi-disciplinary teams.
e. an ability to identify, formulate, and solve engineering problems.
f. an understanding of professional and ethical responsibility.
g. an ability to communicate effectively.
h. the broad education necessary to understand the impact of engineering solutions in a global and societal context.
i. a recognition of the need for, and an ability to engage in life-long learning.
j. a knowledge of contemporary issues.
k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

The student outcomes were established with the goal that they must be compatible with the program educational objectives and the mission of the School and University. Furthermore, the outcomes should be measurable, in the sense that our success in achieving them can be quantified. The BME student outcomes are available to the public at the departmental Web page, http://www.bme.rutgers.edu/content/educationABET.php
BME Faculty/Staff Locator

Phone: 848-445-4500 * Fax: 732-445-3753

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Phone</th>
<th>Room</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androulakis, Ioannis</td>
<td>848 445 6561</td>
<td>212</td>
<td>yannis@soe.rutgers.edu</td>
</tr>
<tr>
<td>Berthiaume, Francois</td>
<td>848 445 6566</td>
<td>217</td>
<td>fberthia@soe.rutgers.edu</td>
</tr>
<tr>
<td>Boustany, Nada</td>
<td>848 445 6598</td>
<td>320</td>
<td>nboustan@soe.rutgers.edu</td>
</tr>
<tr>
<td>Buettner, Helen</td>
<td>848 445 6597</td>
<td>318</td>
<td>buettner@soe.rutgers.edu</td>
</tr>
<tr>
<td>Cai, Li</td>
<td>848 445 6559</td>
<td>208</td>
<td>lcai@soe.rutgers.edu</td>
</tr>
<tr>
<td>Drzewiecki, Gary</td>
<td>848 445 6688</td>
<td>213</td>
<td>garydrz@soe.rutgers.edu</td>
</tr>
<tr>
<td>Freeman, Joseph</td>
<td>848 445 6595</td>
<td>317</td>
<td>jfreemn@soe.rutgers.edu</td>
</tr>
<tr>
<td>Gormley, Adam</td>
<td>848 445 6569</td>
<td>220</td>
<td>adam.gormley@rutgers.edu</td>
</tr>
<tr>
<td>Labazzo, Kristen</td>
<td>848 445 6578</td>
<td>328C</td>
<td>sakala@soe.rutgers.edu</td>
</tr>
<tr>
<td>Langrana, Noshir</td>
<td>848 445 6873</td>
<td>302</td>
<td>langrana@rutgers.edu</td>
</tr>
<tr>
<td>Li, John K-J</td>
<td>848 445 6582</td>
<td>305</td>
<td>johnkli@soe.rutgers.edu</td>
</tr>
<tr>
<td>Mann, Adrian</td>
<td>848 445 8421</td>
<td>CCR 214</td>
<td>abmann@soe.rutgers.edu</td>
</tr>
<tr>
<td>Moghe, Prabhas</td>
<td>848 445 6591</td>
<td>315</td>
<td>moghe@soe.rutgers.edu</td>
</tr>
<tr>
<td>Papathomas, Thomas</td>
<td>848 445 6533</td>
<td>PSY A127</td>
<td>papathom@soe.rutgers.edu</td>
</tr>
<tr>
<td>Parekkadan, Biju</td>
<td>848 445 6566</td>
<td>303</td>
<td>biju.parekkadan@rutgers.edu</td>
</tr>
<tr>
<td>Pierce, Mark</td>
<td>848 445 6570</td>
<td>222</td>
<td>mark.pierce@soe.rutgers.edu</td>
</tr>
<tr>
<td>Roth, Charles</td>
<td>848 445 6686</td>
<td>205</td>
<td>cmroth@soe.rutgers.edu</td>
</tr>
<tr>
<td>Schloss, Rene</td>
<td>848 445 6550</td>
<td>204</td>
<td>schloss@soe.rutgers.edu</td>
</tr>
<tr>
<td>Shinbrot, Troy</td>
<td>848 445 6584</td>
<td>310</td>
<td>shinbrot@soemail.rutgers.edu</td>
</tr>
<tr>
<td>Shoane, George</td>
<td>848 445 6583</td>
<td>306</td>
<td>shoane@soe.rutgers.edu</td>
</tr>
<tr>
<td>Shreiber, David</td>
<td>848 445 6589</td>
<td>113</td>
<td>shreiber@soe.rutgers.edu</td>
</tr>
<tr>
<td>Sy, Jay</td>
<td>848 445 6567</td>
<td>218</td>
<td>js2191@soe.rutgers.edu</td>
</tr>
<tr>
<td>Tutwiler, Valerie Mayer</td>
<td>848 445 6687</td>
<td>209</td>
<td>valerie.tutwiler@rutgers.edu</td>
</tr>
<tr>
<td>Vazquez, Maribel</td>
<td>848 445 6568</td>
<td>219</td>
<td>maribel.vazquez@rutgers.edu</td>
</tr>
<tr>
<td>Yarmush, Martin</td>
<td>848 445 6528</td>
<td>231A</td>
<td>yarmush@soe.rutgers.edu</td>
</tr>
<tr>
<td>Zahn, Jeffrey</td>
<td>848 445 6587</td>
<td>311</td>
<td>jdzahn@soe.rutgers.edu</td>
</tr>
</tbody>
</table>

Staff

<table>
<thead>
<tr>
<th>Staff</th>
<th>Phone</th>
<th>Room</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson, Linda L.</td>
<td>848 445 6869</td>
<td>110</td>
<td>lindalj@soe.rutgers.edu</td>
</tr>
<tr>
<td>UnderGraduate Program Admin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loukidis, Efstratios</td>
<td>848 445 6565</td>
<td>109</td>
<td>stratos@soe.rutgers.edu</td>
</tr>
<tr>
<td>Systems Administrator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stromberg, Lawrence</td>
<td>848 445 6870</td>
<td>111</td>
<td>les42@soe.rutgers.edu</td>
</tr>
<tr>
<td>Graduate Program Admin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yarborough, Robin</td>
<td>848 445 6872</td>
<td>112</td>
<td>ryarboro@soe.rutgers.edu</td>
</tr>
<tr>
<td>Dept. Administrator</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic Curriculum
Department of Biomedical Engineering

<table>
<thead>
<tr>
<th>Fall</th>
<th>Freshman Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>160:171 Intro to Experiment.</td>
<td>440:127 Intro Comp for Engrs</td>
<td>3</td>
</tr>
<tr>
<td>355:101 Expository Writing I</td>
<td>640:152 Calculus II: Math/Phys</td>
<td>4</td>
</tr>
<tr>
<td>640:151 Calculus I: Math/Phys</td>
<td>750:124 Analytical Physics Ib</td>
<td>2</td>
</tr>
<tr>
<td>750:123 Analytical Physics Ia</td>
<td>440:221 Eng Mech: Statics</td>
<td>3</td>
</tr>
<tr>
<td>440:100 Eng’g Orient Lecture</td>
<td>: Hum/Soc Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
<th>Sophomore Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>125:201 Intro to Biomed Eng</td>
<td>125:255 System Physiology</td>
<td>3</td>
</tr>
<tr>
<td>640:251 Multivariable Calculus</td>
<td>640:244 Diff Eqs Eng’g & Phys</td>
<td>4</td>
</tr>
<tr>
<td>750:227 Analytical Physics Ia</td>
<td>750:228 Analytical Physics Ib</td>
<td>3</td>
</tr>
<tr>
<td>750:229 Analytical Physics Ia Lab</td>
<td>750:230 Analytical Phys Ib Lab</td>
<td>1</td>
</tr>
<tr>
<td>119:115 Biology I</td>
<td>119:117 Biology Lab</td>
<td>2</td>
</tr>
<tr>
<td>: Hum/Soc Elective</td>
<td>540:343 Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
<th>Junior Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>125:303 Biomed Trans Phenom</td>
<td>125:304 Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>125:308 Biomechanics</td>
<td>125:315 BME Meas/Analyze Lab</td>
<td>2</td>
</tr>
<tr>
<td>125:309 BME Devices/Systems</td>
<td>: Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>125:310 BME Dev/Sys Lab</td>
<td>: Life Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>: Hum/Soc Elective</td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
<th>Senior Year</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>125:401 Senior Design I</td>
<td>125:402 Senior Design II</td>
<td>1</td>
</tr>
<tr>
<td>125:421 Senior Design Projects I</td>
<td>125:422 Senior Design Projects II</td>
<td>2</td>
</tr>
<tr>
<td>: Departmental Elective</td>
<td>: Departmental Elective</td>
<td>3</td>
</tr>
<tr>
<td>: Technical Elective</td>
<td>: Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>: Hum/Soc Elective</td>
<td>: General Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

BME Degree Credits: 129

- Organic Chemistry is required for the Pre-medical School option. *(Organic Chemistry I + Organic Chemistry II + Lab)* will count for 3 TEs; totaling 9 credits/Take 2 of 3=6 credits / Take 1 of 3=3 credits).
- **ONLY Pre-med students** are required to take all three of the following courses: 119:115 (Biology I) and 119:116 (Biology II) and 119:117 (Biology Lab).
- Rule I: without both intro courses (Intro to BiME + Sys. Phys.) NO 300-level courses – You MUST see UGD for Approval.
- Rule II: for anyone to register in Senior Design they need to have passed 6 out the 8 core BME courses (Passed courses MUST include 309, 310, & 315).
- Total of 12 credits of Technical Electives is Required.
- 14:650:388 Computer-Aided Design in Mechanical Engineering (3 cr. TE) is strongly recommended for the Biomechanics and Rehab Track.
- 125:309/310 Devices Lec/Lab and 125:401/421 Senior Design I Lec/Proj are *only offered* in the **Fall**.
- 125:315 Measurements Lab and 125:402/422 Senior Design II Lec/Proj are *only offered* in the **Spring**.
- Allowed to use an additional Technical Elective 3 cr. (TE) to replace Life Science Elective 3 cr. (LSE).
- BME permanent Summer Courses are 201 and 255.
- BME Core Courses are offered both, Fall and Spring, semesters.
Departmental Guidelines

∞ Organic Chemistry is required for the Pre-Medical School option.

Organic Chemistry I + Organic Chemistry II + Lab will count for 1 technical elective each.
Take 3 of 3 = 9 credits, Take 2 of 3 = 6 credits, or Take 1 of 3 = 3 credits.

∞ Total of **12 credits** of Technical Electives is **Required**!

∞ **ONLY Pre-med students are required** to take all three of the following courses:
119:115 (Biology I) and 119:116 (Biology II) and 119:117 (Lab).

∞ **Class of 2017+**, the number of required credits for BS Degree will decrease to **129**.

∞ 14:650:388 Computer-Aided Design in Mechanical Engineering (3 cr TE) is strongly recommended for the Biomechanics and Rehab Track.

∞ **Rule I:** Without both 200-level courses (Intro to BME [125:201] + Sys. Phys. [125:255])
NO BME 300-level courses – You MUST see UGD for Approval.

∞ **Rule II:** For anyone registering for Senior Design they need to have passed 6 out the 8 core BME courses (Must complete **309, 310, and 315** PLUS at least THREE out of 303, 304, 305, 306, and 308). So basically, we will allow you to take Senior Design if you fail AT MOST TWO COURSES (without counting for the labs).

∞ **Rule III:** The rule for CO-OP is (assuming you are on track)
---> You MUST have completed 309/310.
---> You will be allowed to take 304/306/315 as co-reqs in the senior year.
---> You must have successfully completed everything else.

So, basically CO-OP students are allowed one extra course (315) in the senior year.

This is a fair resolution. It requires that you move to Senior Design after having completed successfully a significant fraction of the course work (6/8) and still we give you the benefit to recover from mishaps without penalizing you with an extra year. If you are 3 or more courses behind, including the labs, YOU should not be in Senior Design.

TRANSFER STUDENTS:
∞ Your curriculum will be determined by the number of credits that are transferred to Rutgers and the remaining courses needed to complete program. The rules above may or may not apply to you. You will find out after your evaluation by the Office of Academic Affairs (OAA).

The OAA handles Transfer Orientation Sessions, please contact that office for more information (848-445-2212).

SCHOOL OF ENGINEERING / ACADEMIC AFFAIRS OFFICE:
∞ You may review the School of Engineering website addressing several concerns: soe.rutgers.edu
There are links to other websites to assist you with most issues you are trying to resolve.
Department Core Course Requirements

The following is a description of the Required core courses that are currently offered by the Biomedical Engineering Department to the School of Engineering undergraduates. Please check with Schedule of Courses online to see which courses will be offered. Although they may appear on list, does not mean they are offered.

14:125:201 Introduction to Biomedical Engineering (3)
Prerequisites: 01:640:152 and (750:124 or 750:203)

Overview of applications of engineering in medicine and healthcare. Introduction to biological and biomedical problems using fundamental concepts and tools from electrical, mechanical, and chemical engineering.

14:125:255 Biomedical Engineering System Physiology (3)
Prerequisites: (640:152 or 640:192) and (750:124 or 750:203)

Introduction to quantitative modeling of physiological systems geared towards the Biomedical Engineering student. It will cover fundamental topics in physiology ranging from cell membrane models and chemical messengers to neuronal signaling and control of body movement. In addition, specific physiological systems are discussed in detail, including the cardiovascular, pulmonary, and visual systems. Furthermore, pharmacokinetic models provide quantitative assessment of the dynamics of drug distribution and compartmental interactions.

14:125:303 Biomedical Transport Phenomena (3)
Prerequisites: 01:640:244 and 14:125:201 and (14:125:255 or 14:125:355)

Biomedical mass transport processes involving diffusion, diffusion-convection, and diffusion-reaction schemes; Introduction to biofluid dynamics; Transport processes in the cardiovascular system, hemorheology, extracorporeal mass transport devices and tissue engineering.

14:125:304 Biomaterials (3)

This course is designed to introduce the subjects of material properties, testing, biomaterial requirements and device design. It is the intention of the instructor to convey the basic knowledge of this large volume of information and to give an elementary understanding of the terminology used in the academic and commercial settings. This will provide the student with rudimentary skills that will allow them to succeed in grasping the ideas and theories of biomaterial science for future work.
14:125:305 **Numerical Modeling in Biomedical Systems (3)**
Prerequisites: 01:640:244 and 14:125:201 and 14:125:255 and 14:440:127

Introduction to modeling and simulation techniques in the analysis of biomedical systems. Application of numerical methods for the solution of complex biomedical process problems. Development and use of PC computer software for the analysis and solution of engineering problems.

14:125:306 **Kinetics and Thermodynamics of Biological Systems (3)**
Prerequisites: 01:119:115 and 01:640:244 and 14:125:201 and 14:125:255

Fundamentals of thermodynamics and kinetic analysis as applied to biomedical systems and technologies. Essential principles in thermodynamics will be introduced, including First Law, Second Law, and interrelationships among thermodynamic variables. Fundamental tools in kinetic analysis are also covered, including interpretation of rate data, enzyme kinetics, and pharmacokinetics. Application to biological systems and biomedical technologies are provided.

14:125:308 **Biomechanics (3)**

This course emphasizes the relationship between applied and resultant forces and stresses acting on the musculoskeletal system. Students are exposed to the basic concepts of vectors, internal and external forces, functional anatomy, trusses and equilibria of spatial force systems, moments and work and energy concepts. In addition, students learn about stress and strain tensors, principal forces, viscoelasticity, and failure analysis from classical mechanics.

14:125:309 **Biomedical Devices and Systems (3)**
Prerequisites: 01:640:251 and 01:750:227 and 14:125:201 and 14:125:255
Co-requisite: 14:125:310

Time and frequency domain analysis of electrical networks; hydrodynamic, mechanical, and thermal analogs; basic medical electronics, and energy conversion systems. Design of biological sensors.

14:125:310 **Biomedical Devices & Systems Lab (1)**
Prerequisites: 01:640:251 and 01:750:227 and 14:125:201 and 14:125:255
Co-requisite: 14:125:309

Experiments and demonstrations dealing with basic medical electronics and signal analysis. Provides an overview of current biomedical technology and its uses.
BME Measurement and Analysis Lab (2)

Experiments and demonstrations dealing with the measurement and analysis of various physiological quantities of cardiovascular and respiratory systems, and the measurement of cellular viability, metabolism, morphogenesis, and protein and nucleic acid composition.

Biomedical Senior Design I/II and Projects I/II (1, 2)

Prerequisites: Senior Standing (Passed 6 out of 8 junior level courses)

The purpose of this course is to give the student a comprehensive design experience in the biomedical engineering field. The student will complete a design project under the supervision of a faculty member. The project will typically involve the experimental or computational study of a design-oriented problem in biomedical engineering.
ELECTIVES

Departmental Electives

Please check with Schedule of Courses online to see which courses will be offered. Although they may appear on list, does not mean they are offered.

14:125:403 Cardiovascular Engineering (3)
Prerequisites: 14:125:303 and (14:125:208 or 14:125:308) and 14:125:315

Introduction to modeling and measurement methods for the cardiovascular system, analysis of blood flow dynamics, the function of the heart, and noninvasive approaches. Applications to cardiovascular instrumentation, basic cardiovascular system research, assist devices, and disease processes.

14:125:409 Introduction to Prosthetic and Orthotic Devices (3)
Prerequisites: 14:125:303 and (14:125:208 or 14:125:308) and 14:125:315
Cross listed with 16:125:540

The course introduces the application of mechanical engineering principles to the design of artificial limbs and braces. Teaching includes basic anatomy and physiology of limb defects, biomechanics, motion analysis, and current device designs. Design and visualization tools will include MatLab, and other application software.

14:125:411 Bioelectric Systems (3)
Prerequisites: 14:125:309 and 14:125:310

Introduction to the understanding of bioelectric phenomena that occur in physiological systems. This includes the origin of biopotentials, the use of biopotential electrodes in their measurements and subsequent amplification, signal processing and analysis of their physiological relevance. Applications of physical principles and basic electric engineering techniques are emphasized.

14:125:417 Introduction to Musculoskeletal Mechanics (3)
Prerequisite: 14:125:208 or 14:125:308

Introduction to motion-actuation, force-generation, and load-support mechanisms in musculoskeletal system, as explained from basic engineering principles. Experimental and analytical approaches to solve realistic orthopaedic and recreational activities problems.
Biomedical Instrumentation Laboratory (3)
Prerequisite: 14:125:315 or 14:332:221 or 14:332:373

Practical hands-on designs of biomedical instrumentation including biopotential and physiological signal processing amplifiers, electrodes, biosensor and transducers, electro-optical, acoustic, and ultrasonic devices.

Introduction to Optical Imaging (3)
Prerequisite: 14:125:303 and 14:125:309

Introductory overview of optical phenomena and the optical properties of biological tissue. The course is specifically focused on optical imaging applications in biology and medicine. Topics will include reflection, refraction, interference, diffraction, polarization, light scattering, fluorescence and Raman techniques, and their application in biomedical imaging and microscopy.

Cytomechanics (3)
Prerequisites: 14:125:303 and (14:125:208 or 14:125:308)

This course will cover the structural and mechanical components of cells, with emphasis on the regulatory roles of physical forces in cell function. Cytomechanics emphasizes the processes that drive tissue growth, degeneration, and regeneration. Several subtopics will be addressed ranging from the study of cellular signaling and metabolism, gene expression, to the study of the biomechanical properties of cells and their components.

Fundamentals and Tools of Tissue Engineering (3)
Prerequisite: 14:125:303

Fundamentals of polymer scaffolds and their use in artificial tissues. Regulation of cell responses in the rational design and development of engineered replacement tissue. Understanding the biological, chemical, and mechanical components of intra and intercellular communication. Preliminary discussions on real-life clinical experiences.

Tissue Eng II, Biomed and Biotechnological Applications (3)
Prerequisites: 14:125:433

This course will cover the applications of tissue engineering and builds upon the prior course fundamentals and tools. Emphasis is placed on applying the fundamental principles and concepts to problems in clinical medicine and large-scale industrial manufacturing. Topics: skin replacement, cartilage tissue repair, bone tissue engineering, nerve regeneration, corneal and retinal transplants, ligaments and tendons, blood substitutes, artificial pancreas, artificial liver, tissue integration with prosthetics, vascular grafts, cell encapsulation and angiogenesis.
14:125:437 Computational Systems Biology (3)

The course will provide an introductory overview of some of the key issues in computational systems biology. The course is designed in a way that will define the systems component and the biology component independently to give the students the opportunity to appreciate the special features of both elements. A novelty of the course is the introduction of medical informatics concepts.

14:125:445 Principles of Drug Delivery (3)

Prerequisites: 14:125:303

Fundamental concepts in drug delivery from an engineering perspective. Biological organisms are viewed as highly interconnected networks where the surfaces/interfaces can be activated or altered ‘chemically’ and ‘physically/mechanically’. The importance of intermolecular and interfacial interactions on drug delivery carriers is the focal point of this course. Topics include: drug delivery mechanisms (passive, targeted); therapeutic modalities and mechanisms of action; engineering principles of controlled release and quantitative understanding of drug transport (diffusion, convection); effects of electrostatics, macromolecular conformation, and molecular dynamics on interfacial interactions; thermodynamic principles of self-assembly; chemical and physical characteristics of delivery molecules and assemblies (polymer based, lipid based); significance of biodistributions and pharmacokinetic models; toxicity issues and immune responses.

14:125:455 BME Global Health (3)

Prerequisites: 14:125:401

This course provides an overview of how biomedical technologies are developed and translated into clinical practice. The course identifies the major diseases facing industrialized and developing countries alongside the technological advances which can be used to tackle these problems. Throughout the course, particular attention will be paid to the economic, ethical, social, and regulatory constraints which often determine the true impact of new technologies.
14:125:465 BME Microfluidics (3)
Prerequisites: 14:125:303 or 14:650:312

Microfluidics is the study of flow phenomena at small length scales with characteristic channel dimensions typically less than the diameter of a human hair. Small length scale effects become important as surface forces such as viscous drag and surface tension govern flow behavior rather than body forces (inertia) as seen in macroscale fluid mechanics. Miniaturization of fluid handling systems also allows the development of cell handling and manipulation devices, or microTotal Analysis Systems (TAS) also called “lab on a chip”, which combines biological sample preparation, separation and analysis in a single device. Topics explored in this class include: fundamental understanding and derivation of constitutive balances in fluid mechanics (i.e. Navier Stokes equation), exploration of electrokinetic flow phenomena for electrophoresis, fabrication techniques for microfluidics, overview of (TAS) systems especially capillary electrophoresis and miniaturized polymerase chain reaction for biochips, and exploration of integrated microfluidics for personalized medicine and drug delivery.

14:125:470 Advanced Biomedical Devices Lab- 3 credits
Prerequisites: 14:125:309, 310, and 315

The course applies the background obtained from the Biomedical Systems and Devices Laboratory and Lecture courses (125:309 and 310) that are restricted to linear systems and devices. This proposed course introduces advanced nonlinear electronics and devices. The Advanced Biomedical Devices lab also covers device standards and precision laboratory test methods; introduction to medical device interface systems; biomedical device power sources; wireless data transmission, basic radio systems; the blue tooth standard. Lastly, students will learn how to apply nonlinear data reduction methods to process long duration wireless data records that they will obtain during lab exercises.

14:125:475 Design and Advanced Fabrication of Biomedical Devices- 3 credits
Prerequisites: 14:125:304

The purpose of this course is to provide an overview of fabrication techniques and bioconjugate chemistry, as applied in the biomedical field. The course will cover topics covering to macro- to molecular-scale considerations for medical devices and implants. Students that complete the course will gain an understanding of the factors that go into the design and fabrication of medical devices as well as the tradeoffs between biomaterials theory and device implementation. They will also have hands-on exposure to digital design tools used in fabrication and observe traditional and cutting-edge fabrication instruments in use.
14:125:493/494 BME Research Scholars Academy (3,3)
Prerequisite: Biomedical Engineering Research Scholars Academy Senior Students Only*

These courses provide advanced research immersion activity and the supporting educational tools for members of the BME Research Scholars Academy that participate within a formalized two-year research experience. Students work independently with faculty members on a research project of relevance to biomedical engineering. In addition, students meet monthly for roundtable discussions of a wide range of scientific ethical and professional issues.

14:125:498/499 Topics in BME (3,3)
Prerequisite: Varies based on Topics

14:440:404 INNOVATION AND ENTREPRENEURSHIP (3)
The course arms the student with the knowledge and perspective needed to evaluate their research for commercial application, to legally protect their innovation, to seek financial resources for venture monetization, to market and present their ideas to interested parties, and to document their venture details within a business plan. With innovation case studies focused upon engineering in the life and physical sciences, and team-based projects to develop feasibility and business plans, the student can easily bridge the current graduate curriculum, focused upon engineering and science, to its natural and successful application in the business world.

16:125:5XX All BME Graduate courses, except 587/588, will count as a Departmental Elective.

Criteria for eligibility/Rules to take Graduate Courses APPLIES:
P/NC options, grading policy, participation expectations, etc.
See Graduate Handbook/Administrator/Director for assistance via bme.rutgers.edu
Acceptable Technical Electives
(Most of the courses listed below have multiple prerequisites. Please check with the Rutgers Schedule of Classes or contact the Department offering these courses regarding updated information about the prerequisites.)

If there is a Technical Elective listed on Degree Navigator and not in handbook, please let us know.

Biomedical Engineering
14:125:4xx Any of the BME departmental elective courses can be counted toward technical electives.
14:125:490 BME Research Scholars Academy (Prereq: RSA Juniors Only) (Contact RSA Advisor[s] for permission)
14:125:491/2 Independent Study Research (6 credits max towards TE) (Only by approval of the Faculty research advisor)
14:125:493/4 BME Research Scholars Academy (Prereq: RSA Seniors Only) (Contact RSA Advisor[s] for permission)
14:125:495 BME Internship
14:125:496/7 BME Co-op Internship (By Permission of Undergraduate Director Only) [Form at end of handbook]

General Engineering
14:440:292 Honors Eng Mech-Dyna
14:440:301 Intro Packaging Eng
14:440:302 Cad for Packaging Engineering
14:440:371 Packaging Eval Mtds
14:440:373 Packaging Manufacturing
14:440:378 Sustainable Packaging
14:440:403 Safety Engineering in Packaging
14:440:404 Innovation & Entrepreneurship for Science and tech
14:440:406 Packaging Printing and Decoration
14:440:468 Packaging Machinery
14:440:471 Distribution Packaging

Anthropology
01:070:349 Advanced Physical Anthropology
01:070:354 Functional and Dev Anatomy of the Primate Skeleton
01:070:358 Introduction to Human Osteology

Biochemistry (Cook College)
11:115:301 Intro Biochemistry
11:115:403 General Biochemistry I
11:115:404 General Biochemistry II

Biology
01:119:116 Biology II

Business
33:799:460 Six Sigma & Lean Manufacturing

Cell Biology and Neuroscience
01:146:245 Fundamentals of Neurobiology
01:146:270 Fundamentals of Cell and Developmental Biology
01:146:295 Essentials of Cell Biology & Neuroscience
01:146:302 Computers in Biology
01:146:445 Advanced Neurobiology I
01:146:446 Advanced Neurobiology lab
01:146:450 Endocrinology
01:146:470 Advanced Cell Biology I
01:146:471 Advanced Cell Biology Laboratory
01:146:474 Immunology
01:146:478 Molecular Biology
Ceramics/Material Science Engineering
14:635:323 Bio Applications of Nanomaterials
14:635:330 Introduction of Nanomaterials
14:635:340 Electrochemical Materials and Devices
14:635:407 Mechanical Properties of Materials
14:635:410 Biological Applications of Nanomaterials and Nanostructures

Chemical and Biochemical Engineering
14:155:411 Introduction to Biochemical Engineering
14:155:551 Polymer Science and Engineering I
14:155:552 Polymer Science and Engineering II

Chemistry
01:160:307* Organic Chemistry I
01:160:308* Organic Chemistry II
01:160:311* Organic Chemistry Lab
01:160:323 Physical Chemistry
01:160:327 Physical Chemistry
01:160:341 Physical Chemistry: Biochemical Systems
01:160:344 Introduction to Molecular Biophysics Research
01:160:409 Organic Chemistry of High Polymers
01:160:437 Physical Chemistry of Biological Systems

Computer Science
01:198:314 Principles of Programming Languages
01:198:416 Operating Systems Design
01:198:417 Distributed Systems: Concepts and Design
01:198:424 Modeling and Simulation of Continuous Systems
01:198:433 Integration of Brain + Computer Sciences
01:198:440 Intro to Artificial Intelligence
01:198:476 Advanced Web Applications: Design and Implementation

Electrical and Computer Engineering
14:332:373 Elements of Electrical Engineering
14:332:346 Digital Signal Processing
14:332:361 Electronic Devices
14:332:376 Virtual Reality
14:332:417 Concepts in Control System Design
14:332:437 Concepts in Digital System Design
14:332:447 Concepts in Digital Signal Processing Design
14:332:448 Digital Signal Processing Design
14:332:452 Introduction to Software Engineering
14:332:461 Pulse Circuits
14:332:465 Physical Electronics
14:332:466 Opto-Electronic Devices
14:332:468 Microelectronic Processing – Design
14:332:471 Concepts in Robotics and Computer Vision
14:332:481 Electromagnetic Waves

English Department
01:355:302 Scientific and Technical Writing
01:355:322 Writing for Engineers

Genetics
01:447:245 Intro to Cancer
01:447:380 Genetics
01:447:390 General Microbiology
01:447:489 Advanced Independent Study in Genetics
01:447:495 Cancer
Industrial Engineering
14:540:461 Engineering Law

Mathematics
01:640:250 Introductory Linear Algebra
01:640:300 Introduction to Mathematical Reasoning
01:640:321 Applied Mathematics
01:640:325 Foundation of Quantum Mechanics
01:640:350 Linear Algebra
01:640:351 Intro to Abstract Algebra I
01:640:352 Intro to Abstract Algebra II
01:640:354 Linear Optimization
01:640:357 Topics in Applied Algebra
01:640:373 Numerical Analysis I
01:640:374 Numerical Analysis II
01:640:421 Advanced Calculus for Engineering
01:640:423 Elementary Partial Differential Equations
01:640:424 Stochastic Models in Operation Research
01:640:428 Graph Theory
01:640:454 Combinatorics
01:640:495 Selected Topics and Mathematics

Mechanical and Aerospace Engineering
14:650:342 Design of Mechanical Components
14:650:388 Computer-Aided Design in Mechanical Engineering
14:650:401 Mechanical Control Systems
14:650:449 Introduction to Mechanics of Composite Materials
14:650:455 Design of Mechanisms
14:650:472 Biofluid Mechanics

Molecular Biology and Biochemistry
01:694:301 Introductory Biochemistry & Molecular Biology
01:694:407/8 Molecular Biology & Biochemistry
01:694:411 Molecular Pathways & Signal Transduction

Pharmacology and Toxicology
30:718:304 Pathophysiology

Pharmaceutics
30:721:301 Introduction to Pharmaceutics
30:721:320 Drug Delivery I and Laboratory
30:721:430 Introduction to Biopharmaceutics and Pharmacokinetics

Physics
01:750:305 Modern Optics
01:750:313 Modern Physics
01:750:406 Introductory Solid-State Physics
01:750:417 Intermediate Quantum Mechanics
01:750:464 Mathematical Physics

Statistics
01:960:379 Basic Probability and Statistics
01:960:384 Intermediate Statistical Analysis
01:960:401 Basic Statistics for Research
01:960:463 Regression Methods
01:960:467 Applied Multivariable Analysis
01:960:484 Basic Applied Statistics

* Organic Chemistry is required for the Pre-Medical School option.
Acceptable Life Science Electives “or ANY course from the BME TE list”

Biochemistry (Cook College)
11:115:301 Intro to Biochemistry
11:115:403 General Biochemistry I
11:115:404 General Biochemistry II

Cellular Biology and Neuroscience
01:146:245 Fundamentals of Neurobiology
01:146:270 Fundamentals of Cell and Developmental Biology
01:146:295 Essentials of Cell Biology & Neuroscience
01:146:302 Computers in Biology
01:146:445 Advanced Neurobiology I
01:146:446 Advanced Neurobiology Lab
01:146:450 Endocrinology
01:146:470 Advanced Cell Biology I
01:146:471 Advanced Cell Biology Laboratory
01:146:474 Immunology
01:146:478 Molecular Biology

Genetics
01:447:245 Intro to Cancer
01:447:390 General Microbiology
01:447:495 Cancer
01:680:390 General Microbiology

Molecular Biology and Biochemistry
01:694:301 Intro to Biochem & Mol.Biology
01:694:407 Molecular Biology & Biochemistry I
01:694:408 Molecular Biology & Biochemistry II
01:694:411 Molecular Pathways & Signal Transduction

Pharmacology and Toxicology
30:718:304 Pathophysiology

Psychology
01:830:313 Physiological Psychology
Humanities/Social Science & General Electives

Please refer to:

http://www.soe.rutgers.edu/oas/electives

for list of Humanities/Social Science & General Electives

Office of Academic Affairs (B100) maintains & approves this list.

** BME supports and approves these listings **
Modern applications of Biomedical Engineering encompass a wide range of technical areas. The goal of the Rutgers Biomedical Engineering Department is to educate its students with a broad base in core biomedical engineering and provide depth in the frontier areas of biomedical engineering profession through exposure to key areas of specialization. The entire spectrum of these application areas is organized into three distinct “tracks”. Based on the choice of the track, the student can then design the appropriate technical elective, life-science elective, and departmental elective supportive of the track at junior and senior levels. In the event there are specific questions related to each track, track faculty advisors should be contacted. More information on the scope and composition of each of the three tracks appears in the order of the tabulated tracks on the following pages. The track compositions will be continually revised to reflect the emerging advances and opportunities in Biomedical Engineering.

* Please check with the Track Advisors for updates to recommended track electives.
{Please see page 3 for Track Advisor(s)}

* Beyond four (4) BME departmental elective courses can be counted toward technical electives.

❖ Your degree will say: “Biomedical Engineering”
(it will not specify a Track; no need to declare a Track)
It is not mandatory to take all courses under a track for degree.
Track 1. Biomedical Computing, Imaging & Instrumentation (BCII)

Target Audience:

This track is designed to train students who are interested in academic or industrial careers that involve the measuring and modeling of physiological systems, medical imaging, medical image processing and analysis and the graphics and visualization industries. Emphasis is placed both on understanding the physiological system as well as the engineering and development of new sensors and measurement devices. Specialists in Medical Imaging and Medical Image Analysis find careers in small and large industries as well as research centers and universities. This track will also prepare students with a solid background for graduate study.

BME Department Electives for BCII Track

14:125:403 Cardiovascular Engineering
14:125:411 Bioelectric Systems
14:125:424 Biomedical Instrumentation Lab
14:125:431 Introduction to Optical Imaging
14:125:437 Computational Systems Biology
14:125:455 BME Global Health
14:125:465 BME Microfluidics

Recommended Life Science Electives for BCII Track *(see complete list of Life Sciences in Handbook)*

01:146:245 Fundamentals of Neurobiology
01:146:270 Fundamentals of Cell and Developmental Biology
01:146:295 Essentials of Cell Biology & Neuroscience

Recommended Technical Science Electives for BCII Track *(see complete list of TE in Handbook)*

01:198:424 Modeling and Simulation of Continuous Systems
14:332:346 Digital Signal Processing
14:332:361 Electronic Devices
14:332:376 Virtual Reality
14:332:417 Control Systems Design
14:332:448 Image Processing-Design
14:332:466 Opto-Electronic Devices
14:332:471 Robotics and Computer Vision
01:640:350 Linear Algebra
01:640:421 Advanced Calculus for Engineering
01:750:305 Modern Optics
Track 2. Biomechanics and Rehabilitation Engineering (BRE)

Target Audience:
The biomechanics “option” has added emphasis on tissue and fluid mechanics, whereas the rehabilitation engineering option has an emphasis on prosthetics and assisted devices. Track-specific electives have been identified as more appropriate for an emphasis on rehabilitation engineering (R) and/or biomechanics (B). Students undertaking this curriculum will be well prepared for employment in the medical device industry (orthopedic, imaging, cardiovascular), and positions involving direct contact with health care, rehabilitation, and human performance. The track is also an excellent background for students seeking advanced degrees in engineering, medicine, and physical/occupational therapy.

BME Department Electives for BRE
14:125:409 Introduction to Prosthetics (R)
14:125:417 Musculoskeletal Mechanics
14:125:432 Cytomechanics (B)
14:125:433 Tissue Engineering I: Fundamentals and Tools (B)
14:125:434 Tissue Engineering II: Biomedical and Biotechnological Applications (B)
14:125:455 BME Global Health
14:125:460 Motor Control & Motion Analysis
14:125:465 BME Microfluidics

Recommended Life Science Electives for BRE Track (see complete list of Life Sciences in Handbook)
01:146:270 Fundamentals of Cell and Developmental Biology (B)

Recommended Technical Science Electives for BRE Track (see complete list of TE in Handbook)
14:155:551 Polymer Science and Engineering I
14:155:552 Polymer Science and Engineering II
14:332:376 Virtual Reality
14:332:471 Robotics and Computer Vision
14:440:222 Dynamics
14:540:461 Engineering Law
14:635:320 Introduction to Nanomaterials
14:635:407 Mechanical Properties of Materials
01:640:421 Advanced Calculus for Engineering
14:650:342 Design of Mechanical Components
14:650:388 Computer-Aided Design
14:650:401 Control Systems
14:650:455 Design of Mechanisms
14:650:472 Biofluid Mechanics (B)
01:960:384 Intermediate Statistical Analysis
Track 3. Tissue Engineering and Molecular Bioengineering (TEMB)

Target Audience:
This track is designed for students who desire to apply engineering principles to the development of biomedical technologies underlying tissue engineering, biomaterials design and applications, and molecular medicine. An emphasis is placed on biochemistry and on molecular and cell biology in the life sciences arena and on thermodynamics, kinetics, and transport and materials sciences within the engineering sciences. Students undertaking this curriculum will be well prepared for employment in the tissue engineering, pharmaceutical and biotechnology industries, for medical school, or for graduate study in Biomedical Engineering.

BME Department electives appropriate for TEMB

14:125:433 Tissue Engineering I: Fundamentals and Tools
14:125:434 Tissue Engineering II: Biomedical and Biotechnological Applications¹
14:125:437 Computational Systems Biology
14:125:445 Principles of Drug Delivery
14:125:455 BME Global Health
14:125:465 BME Microfluidics

Recommended Life Science Electives (see complete list of Life Sciences in Handbook)

01:694:301 Intro. to Biochemistry & Molecular Biology
01:694:407 Molecular Biology & Biochemistry I
01:694:408 Molecular Biology & Biochemistry II
01:146:270 Fundamentals of Cell and Developmental Biology

Recommended Technical Science Electives (see complete list of TE in Handbook)

01:146:474 Immunology
01:146:470 Advanced Cell Biology I
14:155:411 Introduction to Biochemical Engineering
14:155:551 Polymer Science and Engineering I
14:155:552 Polymer Science and Engineering II
01:160:409 Organic Chemistry of High Polymers
01:447:380 Genetics
14:635:320 Introduction to Nanomaterials
14:635:323 Bio. Applications of Nanomaterials
01:640:250 Introduction to Linear Algebra
01:640:421 Advanced Calculus for Engineering
01:694:411 Molecular Pathways and Signaling
01:960:379 Basic Probability and Statistics
01:960:384 Intermediate Statistical Analysis
Special Programs

Declaring a Minor
There are no official minors in any engineering subject. It is possible for students to pursue 2 engineering BS degrees, simultaneously or sequentially. In this case only 1 set of humanities/social science electives need to be completed.

Declaring a Different Major within Engineering
Careful thought should precede any change of curriculum. Students should consult the executive officers or appropriate faculty advisors in the two majors.

Double Major vs. Dual Degree
A Double Major means that you must fulfill the ‘major requirements’ as described for that department (refer to the Undergraduate catalog for details). Generally, a second major is around 30 credits. You would remain a School 14 student, but you would have the second major denoted on your transcript.

A Dual Degree means that you apply to the other college and be accepted. After you are accepted, you must fulfill all requirements for the BA for that college (like Rutgers College or Cook College). This is a more involved process and includes additional work on top of the ~30 credits for the major. For example, if you declare a technical major like Mathematics or Physics, Rutgers College requires that you take additional non-western humanity courses as well as completing a minor in a H/SS area. Consult the specific college for more details.

You would receive two separate degrees, one from each school. If you do not complete both degrees concurrently (example, you have a few classes left for you BA, and you decide to graduate with just your BS from Engineering), you may not come back to finish your remaining classes and obtain the second degree.

For either option, refer to the department in which you want to get the major/degree for advice on course selection, and check the RU catalog and departmental websites. Fill out the form and bring it to EN B100 (Academic Affairs).

B.S./M.B.A. Program
Qualified candidates for the Bachelor of Science (BS) degree in the School of Engineering are given the opportunity to obtain the Master of Business Administration (MBA) degree from the Rutgers Graduate School of Management in one year of academic work following the completion of the requirements for the BS degree.

If accepted into the program, during the fourth year, BME students will take graduate courses towards the MBA degree which will be offered at Rutgers Business School: Graduate Program — Newark and New Brunswick's campuses. The fourth year is declared as the senior year of undergraduate school. The student, consequently, receives the benefit of undergraduate tuition rates. At the end of the fourth year, students should have successfully completed all undergraduate requirements for the BS Degree. During the fifth year, the students will complete graduate studies and receive the MBA degree.

A 3.0 grade point average is required. The GMAT should be taken during the junior year. The application to the MBA program should be pursued during the spring semester of the junior year. Please contact the Business School for more information.

B.S./M.D. Program
BME students either are not eligible to do the BS/MD program or that they will be expected to take the full 4 years to complete the program. Please contact the Health Professions Office for more information at hpo.rutgers.edu.
Bachelor's/Master's Combined Degree Program

The goal of the BME Bachelor’s/Master’s Combined Degree Program (BME-CDP) is to allow academically qualified students to receive the B.S and M.S. /M.Eng degrees in a shortened time frame. This highly intensive academic program gives students more research experience and better prepares them for research and development careers or further graduate study. Completing the BME-CDP is possible in as little as 5 years if the candidate takes graduate-level courses in the senior year in addition to completing all the undergraduate degree requirements. (Courses cannot double-count for both UG requirements and graduate credit)

Information can be found at https://bme.rutgers.edu/resources-and-forms

Including: Eligibility, Curriculum, and Application.

Email Graduate Administrator with questions.

James J. Slade Scholars Program

Administered through Office of Academic Affairs

www.soe.rutgers.edu/oaa

Application & Completion forms for James J. Slade Scholar can be found on the above link

Please complete forms in its entirety.

NOTE:

James J. Slade Program does not count toward the Undergraduate BS Degree!

However, you can earn credit toward the Graduate Degrees.

Register for courses 16:125:587/588.

Directed Research in Biomedical Engineering

These courses (291,292) provide opportunity to students (with 3.25 or higher GPA) to participate in research project earlier within biomedical engineering environment. The underclass students are provided with appropriate facilities and other professional development opportunities.

Note: The credits earned are extra and does not count towards the graduation requirements of BME Degree.

Prerequisite: Permission of department.

*Extra Special Problem courses (491-492) credits or other technical courses may be used to replace up to four required technical courses (including those in the major) with the approval of research advisor and executive officer.
Industrial Interactions

Career Services will be assisting you with career development and employment opportunities. They have a variety of resources (CareerKnight, Online Career Self-Assessment and Planning, On-Campus Interviewing Program), various clinics (Mock Interview Clinic, Drop-in Resume Clinic, Networking Clinic, Internship Clinic) and the staff (Liaisons for Engineering: Joe Scott, Tamara Peters and Mindy O’Mealia) to provide you with the guidance you will need and the career opportunities you are seeking.

Your next step should be to access the CareerKnight system at http://careers.rutgers.edu. All students automatically have a CareerKnight account. This system will allow you to begin your career development plan from scheduling an appointment with a career counselor to applying for internships. You can also contact Career Services at 848-932-7997, if you have any questions.

Once you have located the Internship, complete the Application for Internship in this handbook and submit to the Undergraduate Administrator will provide you access to register.

Please ensure that you are aware of the following:

Regulations:
1. Internship credits counts as a Technical Electives ONLY. No Exceptions!
2. Graded on a Pass/No Credit scale.
3. Final report (1-2 pages) MUST be submitted to *UG Director* at end of Internship summarizing work.
4. Supervisor(s) MUST submit evaluation to *UG Director* at the end of the Internship.
5. Register during open registration period.
6. Limit is TWO Internship 3cr. Courses will count towards degree.

Co-op Program

The Co-op program is a formal mechanism where students earn course credits by working for a local company for six months (one semester plus a summer). This provides the students with a capstone experience to the undergraduate curriculum by integrating prior coursework into a working engineering environment. Previous Co-op students have worked at companies such as Johnson & Johnson Ethicon, Johnson & Johnson McNeil, Howmedica Osteonics, and Boston Scientific. Please see the Undergraduate Director for approval.

If you have any questions, please feel free to send an email to Kristen Labazzo at sakala@soe.rutgers.edu or stop by her office in the Biomedical Engineering Building, Office 328C.
Faculty Research Expertise

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Research Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ioannis P. Androulakis</td>
<td>Ph.D., Purdue University</td>
<td>Novel computational algorithms, microarray experiment and molecular dynamics simulations, combustion phenomena</td>
</tr>
<tr>
<td>Francois Berthiaume</td>
<td>Ph.D., Pennsylvania State University</td>
<td>Wound Healing, Tissue Engineering & Regenerative Medicine, Metabolic Engineering</td>
</tr>
<tr>
<td>Nada Boustany</td>
<td>Ph.D., Massachusetts Institute of Technology</td>
<td>Biomedical Imaging, Cellular Biophysics, Optical Microscopy</td>
</tr>
<tr>
<td>Helen Buettner</td>
<td>Ph.D., University of Pennsylvania</td>
<td>Nerve growth and regeneration, cellular engineering, modeling of biological processes, computer graphics and simulation, video microscopy</td>
</tr>
<tr>
<td>Li Cai</td>
<td>Ph.D., Dana Farber Cancer Institute</td>
<td>Nerve growth and regeneration, cellular engineering, modeling of biological processes, computer graphics and simulation, video microscopy</td>
</tr>
<tr>
<td>Gary Drzewiecki</td>
<td>Ph.D., University of Pennsylvania</td>
<td>The cardiovascular system, new methods of blood pressure determination, mathematical models of the normal and diseased heart, study of flow in circulation, application of chaos and fractals</td>
</tr>
<tr>
<td>Joseph Freeman</td>
<td>Ph.D., Rutgers University</td>
<td>Tissue engineering, Biomechanics, Biomaterials, and Musculoskeletal regeneration</td>
</tr>
<tr>
<td>Adam Gormley</td>
<td>Ph.D., University of Utah</td>
<td>Biomaterials, nanomedicine, self-assembly, biosensing and diagnostics</td>
</tr>
<tr>
<td>Ilker Hacihaliloglu</td>
<td>Ph.D., University of British Columbia</td>
<td>Biomedical Imaging, Computer Assisted Surgery, Image Guided Orthopedic Surgery</td>
</tr>
<tr>
<td>Kristen Labazzo</td>
<td>Ph.D., Rutgers University</td>
<td>Biomaterials, mesenchymal stem cells, medical devices, assistive technologies</td>
</tr>
<tr>
<td>Noshir Langrana</td>
<td>Ph.D., Cornell University</td>
<td>Orthopedic biomechanics, biomechanical design, finite element methods and tissue engineering</td>
</tr>
<tr>
<td>John K-J. Li</td>
<td>Ph.D., University of Pennsylvania</td>
<td>Cardiovascular mechanics, biosensors and transducers, cardiac arrhythmias and assist devices, controlled drug delivery systems, ultrasound, and electro-optics</td>
</tr>
</tbody>
</table>
Adrian Mann
D. Phil., Oxford University
Biomaterial fabrication and characterization, Nanomechanics and Nanoprobe Microscopy

Prabhas Moghe
Ph.D., University of Minnesota
Cell and tissue engineering, Cell-interactive Biomaterials, Micro/Nanobiotechnology

Thomas Papathomas
Ph.D., Columbia University
Modeling of motion, texture and stereo mechanisms of the human visual system, psychophysical experimentation and image processing, computer vision, and scientific visualization

Biju Parekkadan
Ph.D., Harvard-MIT Division of Health Sciences and Technology
Cell & Genetic Engineering, Bioreactor engineering, Regenerative Medicine & Immunotherapy

Mark Pierce
Ph.D., University of Manchester
Biomedical optics, Microscopy, Contrast agents, Cancer imaging

Charles Roth
Ph.D., University of Delaware
Molecular bioengineering; nucleic acid biotechnology; liver systems engineering; cancer therapeutics

Troy Shinbrot
Ph.D., University of Maryland
Nerve regeneration; structure from noise; pharmaceutical engineering

George Shoane
Ph.D., University of California, Berkeley
Biological Control and Feedback; Biomedical Modeling

David Shreiber
Ph.D., University of Pennsylvania
Tissue engineering, injury biomechanics, and nerve regeneration

Jay Sy
Ph.D., Georgia Institute of Technology & Emory University
Drug delivery, Biomaterials, Medical Devices

Valerie Mayer-Tutwiler
Ph.D., Drexel University
Hemostasis/Thrombosis, Biomechanics, Biomaterials, Inflammation

Maribel Vazquez
Sc.D., Massachusetts Institute of Technology
Microfluidics-based biosystems, neural cell migration and retinal regeneration

Martin Yarmush
Ph.D., Rockefeller University
M.D., Yale University School of Medicine
Tissue engineering, molecular bioengineering, bioseparations and biothermodynamics, and metabolic engineering

Jeffrey Zahn
Ph.D., University of California, Berkeley
Microfabrications and microfluidics
Forms: Research Guidelines

Internship in Biomedical Engineering:

Courses graded as Pass/No Credit can be counted as 3 credit technical electives.

The UAB has agreed to accept up to 6 credits in experiential based learning toward the Engineering degree in addition to the capstone design. Exceptions can be made by the UGDs to accept up to 9 credits max. We had an implicit rule for making such an exception:
- We accept 9 credits max for students who have completed both the Internship (125:495; 3 credits) and a co-op (125:496/497; 6 credits)
- We accept 6 credits max for students who have not completed a co-op, which means two 3-credit Internship courses can be counted.

Some additional notes:
- For any given semester, students can only take up to 6 credits of experiential based learning, so students are not allowed to register co-op and internship together.
- By default, departmental Independent Study courses are also considered as experiential based learning, so they are part of the mix as well. UGDs can override this default if an independent study is offered in a classroom setting.
- The max number of research credits includes research done in other departments not managed by BME.

Time/Hours Expected Weekly-Minimum:

For Research, Co-op, or Internship; there is a **standard 5 hours per credit minimum required**.
(Example. 3 credits = 15 hours minimum; 2 credits = 10 hours minimum; 1 credit = 5 hours minimum)

*However, student and PI may reach alternate (more or less) arrangements based on research needs.

Due to COVID19:

The following forms must be sent directly to Advisors/Faculty/PIs and UnderGraduate Director to obtain their signature and ultimately sent to UnderGraduate Administrator for registration purposes.
Application for Directed Research 14:125:291/292
DEPARTMENT OF BIOMEDICAL ENGINEERING

** FRESHMAN AND SOPHOMORE STUDENTS **

Instructions:
1) MUST be a BME Student with GPA of 3.25 or higher.
2) Complete this form and obtain all required signatures.
3) Submit it to the Undergraduate Program Administrator in BME-110 for the Special Permission Number to register during registration period.
4) Use the Special Permission number given to register for 3 credits! to be a full-time student only
5) CREDITS Do Not count toward BS DEGREE. No Exceptions!
6) Advisor(s) must submit grade via email to Undergraduate Director promptly during grading period. (Grades of A, B, and C correspond to Pass)

Student’s Name (Print)__#
 (Last) (First) (RUID)

E-Mail: ______________________________ Avg. GPA: __________________

Semester: __________________________ Class of: ______________________

Are you on academic probation? Yes ______ No _____

*Print PI’s name(s) Lab: __

Project Title:
__
__
__

Approval Signature(s) of PI’s:
__

Department Chair or Undergraduate Director’s Signature:
__Date: _______________

Signature of Student: __________________________Date: _______________

Index Number: _______________ Special Permission Number:______________
Appl. for Independent Study 14:125:491/492 (3 cr.)

DEPARTMENT OF BIOMEDICAL ENGINEERING

** JUNIOR AND SENIOR STUDENTS **

Instructions:
1) Complete this form and have it signed by the research advisor you will be working under.
2) Submit it to the Undergraduate Program Administrator in BME-110 for the Special Permission Number to register during registration period.
3) Use the Special Permission number given to register for 3 credits!
4) TECHNICAL ELECTIVE credit only. No Exceptions!
5) You must have completed or currently registered for Devices Lecture and Lab to be eligible.
6) Advisor(s) must submit grade via email to Undergraduate Director promptly during grading period.

Student's Name (Print)_________________________, ______________________ # __________

(Last) (First) (RUID)

E-Mail: __________________________ Avg. GPA: ________________

Semester: __________________________ Class of: __________________________

Are you on academic probation? Yes _____ No _____

If yes, you cannot receive credit for Independent Study in Biomedical Engineering.

(Maximum number of credits students can earn for Independent Study in Biomedical Engineering is six, but no more than three in any semester.)

*Print PI's name(s): __________________________

Project Title:

__

__

If you are not a BME student,
Please give your department name: __________________________

Approval Signature(s) of PI's and Email Address(es):

PI's Signature: __________________________ Email: __________________________

Signature of Student: __________________________ Date: __________________________

Index Number: __________________________ Special Permission Number: __________________________
BME Research Scholars Academy

MUST BE A RISING JUNIOR IN ORDER TO APPLY

For **APPLICATION PROCESS** - Rising Juniors will be informed how to apply!

The BME Research Scholars Academy is designed for a highly selective group of biomedical engineering undergraduates, who, based on their demonstrated academic record and/or research potential, are given the opportunity to immerse themselves in an accelerated research program at Rutgers. It is anticipated that most Research Scholars Academy members will go on to further graduate and/or professional training after graduation.

- Applications are submitted online by Aug. 31st (junior year). We adhere to a minimum 3.5 GPA. Student must have planned with the prospective mentors prior to filling out the application.
- Selected candidates are provisionally admitted to the RSA and are assigned to mentors by the end of September (junior year).
- Students are evaluated by their mentors during the remaining of the fall semester and a final decision for accepting a student into the RSA is made by the mentor by the end of the semester and is communicated to the faculty responsible for the RSA program. We will establish general guidelines regarding what constitutes an evaluation. The process needs to be clear and transparent and students need to be aware of what is required of them. Students who fall during the probation period cannot re-apply and/or be assigned to a different faculty member. The final decision is not negotiable. The fall semester of the junior year is a trial period for which students do not receive credit for.
- Students admitted to the RSA register for the upcoming 3 consecutive semesters (490 spring junior, 493 fall senior, 494 spring senior) and receive 9 credits and policies are the same. No co-op is allowed unless it is the result of prior coordination between the mentor and the industrial partner and it involves work related to a student’s HA project.
- Grading Policy:
 a. active participation of research in mentor's lab
 b. presentation on RSA student's research project (RSA project and Senior Design project should be different, if they are the same, significant amount of efforts should be put into the project)
 c. a short project report (includes: Abstract, Intro, Methods, Results, and Discussions) to both the mentor and the RSA coordinator.
 d. participation of RSA activities (e.g., seminars on poster preparation, preparation for Graduate/Medical school applications, Graduate/Medical student lives, etc.)
- The Academy members are nominated for the Rutgers University Research Fellowship (RURF) and other appropriate fellowship opportunities.
- In appropriate cases, the Academy members will be supported by faculty research grants through Research Experiences for Undergraduate Supplements or other federal and industrial grants.

REGISTRATION FOR CREDITS: The Research Scholars Academy members can count to six credits of Advanced BME Research (125:493 or 494) toward their BME technical electives or BME departmental electives. (In addition, Academy members can count a maximum of three credits of Independent Study in Biomedical Engineering (125:491, 492) electives toward their technical electives.

Note: Students that do not belong to the Research Scholars Academy and perform individual research with a BME faculty can count up to six credits of Independent Study in Biomedical Engineering in Research (125:491, 492) toward their technical electives, but they will not be allowed to register for 125:493 or 125:494, nor count any of their research toward departmental elective requirements.

For further information on the Research Scholars Academy, including application procedure, please contact Dr. Ioannis (Yannis) Androulakis, See Faculty Locator page for info.
Application for Internship 14:125:495 (3 cr.)

DEPARTMENT OF BIOMEDICAL ENGINEERING

*This form MUST be completed before registering for Internship. It must be approved by the Undergraduate Director. Then given to Undergraduate Administrator, who will assign a special permission number. *

II. PERSONAL INFORMATION

REGISTERING for: ___ Summer (OR) ___ Fall/Spring

Student's Name (Print)___, __

(Last) (First)

Phone: _____________________________ Class of: _____________________________

Email: ___________________________ RUID#______________________________

III. EMPLOYER INFORMATION

Employing Institution: __________________________

Supervisor/Contact Name(s):

1. ___________________________ 2. ___________________________

Phone/Fax: ___________________________ Phone/Fax: ___________________________

Email: ___________________________ Email: ___________________________

Job Description: ___

__

IV. Regulations:

1. Internship credits counts as a Technical Electives ONLY. No Exceptions!
2. Graded on a Pass/No Credit scale
3. Final report (1-2 pages) MUST be submitted to *UG Director* at end of Internship summarizing work
4. Supervisor(s) MUST submit evaluation to *UG Director* at the end of the Internship
5. Register during open registration period.
6. Limit is TWO Internship 3cr.

V. Signatures:

I have read the above regulations and understand the rules for my Internship assignment

Student’s Signature: ___________________________ Date: ___________________________

UG Director Signature: ___________________________ Date: ___________________________

Index Number: ___________________________ Special Permission Number: ______________
Application for CO-OP 14:125:496/497 (6 cr.)

DEPARTMENT OF BIOMEDICAL ENGINEERING

This form MUST be completed before registering for Co-op. It must be approved by the Undergraduate Director. Then given to Undergraduate Administrator, who will assign a special permission number.

I. PERSONAL INFORMATION

Student's Name (Print)_________________________,____________________#__________________

(Last) (First) (RUID)

Phone: ____________________________ Class of: ____________________________

Email: ____________________________ Course: 125:496____ or 125:497____

II. EMPLOYER INFORMATION

Employing Institution: ___

Supervisor/Contact Name(s):

1. ____________________________ 2. ____________________________

Phone/Fax: ____________________________ Phone/Fax: ____________________________

Email: ____________________________ Email: ____________________________

Job Description:

__

__

III. Regulations:

a. Co-op credits counts as a Technical Electives ONLY, No Exceptions!

b. Graded on a Pass/No Credit scale.

c. Final report (1-2 pages) MUST be submitted to *UG Director* at end of Co-op summarizing work.

d. Supervisor(s) MUST submit evaluation to *UG Director* at the end of the Co-op.

e. Up to 6 additional credits may be taken while on Co-op. Only ONE course during the day.

f. work *continuously* for 6 months (Semester + Summer [not negotiable]).

g. *Full-time* job assignment required.

h. Register during open registration period.

i. Non-compliant with all above – NOT ELIGIBLE FOR CO-OP…see Internship in BME.

j. Limited to ONE Co-Op 6 cr.

IV. Signatures:

I have read the above regulations and understand the rules for my co-op assignment

Student’s Signature:__________________________ Date: ________________

UG Director Signature:__________________________ Date: __________________

Index Number: _____________________ Special Permission Number: ___________________